The complexity of promise SAT on non-Boolean domains

Alex Brandts, Marcin Wrochna, and Standa Živný

2-SAT vs 3-SAT

• 2-SAT is in P, 3-SAT is NP-hard – what happens in between?

For a k-CNF formula, (1, g, k)-SAT asks to distinguish between the two cases:

- \bullet There exists a truth assignment satisfying at least g literals in every clause
- The formula is unsatisfiable

Theorem: [Austrin Guruswami Håstad] When $\frac{g}{k} \ge \frac{1}{2}$, (1, g, k)-SAT is in P and otherwise is NP-hard

• How to extend this problem to larger domains?

(1, g, k)-SetSAT

- Domain [d]
- Literals $S_a(x)$ satisfied iff $x \neq a$
- Clauses $(S_{a_1}(x_1), S_{a_2}(x_x), \dots, S_{a_k}(x_k))$
- (1, g, k)-SetSAT asks to distinguish the two cases:
 - there exists an assignment to the variables such that at least g literals in each clause are satisfied
 - the formula is unsatisfiable

Main result: (1, g, k)-SetSAT with set size s and domain size s + 1 is solvable in polynomial time if $\frac{g}{k} \ge \frac{s}{s+1}$ and is NP-hard otherwise.

• With s = 1 we recover the results for Boolean (1, g, k)-SAT

Tractability

- **Algorithm 1** Randomised algorithm for (1, g, k)-SetSAT with $\frac{g}{k} \geq \frac{s}{s+1}$.
 - 1: $x \leftarrow \text{arbitrary assignment}$
 - 2: while x does not satisfy input formula ϕ do
 - 3: Arbitrarily pick a falsified clause C
 - 4: Randomly choose from C a literal $S(x_i)$
- 5: Randomly choose a value for x_i so that $S(x_i)$ is satisfied return x

Analysis

- Suppose ϕ has a g satisfying assignment x^* .
- Let x^t be assignment at iteration t
- As t increases, the distance from x^t to x^* decreases in expectation
- Biased random walk reaches x^* with constant probability in $O(n^2)$ steps

Tractability via polymorphisms

- What polymorphisms does (1, g, k)-SetSAT have when $\frac{g}{k} \ge \frac{s}{s+1}$?
- All polymorphisms of SetSAT are conservative
- Plurality functions are polymorhpisms

$$f(x_1, \ldots, x_m) = \operatorname{argmax}_{a \in [d]} \{ \# \text{ of occurrences of } a \text{ in } (x_1, \ldots, x_m) \}$$

- When $\frac{g}{k} > \frac{s}{s+1}$, we have plurality pols of all arities \Rightarrow solvable by BLP
- When $\frac{g}{k} = \frac{s}{s+1}$, we have plurality of arity $\not\equiv 0 \pmod{s+1}$ and no symmetric pols of arity divisible by $s+1 \Rightarrow$ solvable by BLP+AIP

Hardness

- What polymorphisms remain when $\frac{g}{k} < \frac{s}{s+1}$?
- All plurality pols now have bounded essential arity, but there still exist pols of unbounded essential arity
- Pols don't satisfy sufficient hardness conditions involving fixing sets, avoiding sets, ϵ -robustness, lack of Olšák polymorphisms
- We need a new hardness source, or a new property of pols to exploit

Smug sets

• S is a smug set if there is an input vector v such that $S = \{i | v_i = f(v)\}$

Proposition: A function $f:[s+1]^m \to [s+1]$ is a polymorphism of (1,g,k)-SetSAT iff there is no multiset $\{S_1,\ldots,S_k\}$ of smug sets of f, such that each coordinate $\ell \in [m]$ is contained in at most k-g of them.

Hardness source: layered label cover

- ℓ layers of variables X_0, \ldots, X_ℓ with range [m]
- Constraints are functions from $x \in X_i$ to $y \in X_j$, i < j
- Constraint $\phi_{x\to y}$ is satisfied by assignment σ if $\sigma(y) = \phi_{x\to y}(\sigma(x))$
- A chain is a sequence of variables $x_i \in X_i$ for $i = 0, ..., \ell$ with constraints $\phi_{x_i \to x_j}$ between them, for i < j
- A chain is weakly satisfied if at least one of these constraints is satisfied

Theorem: For every ℓ and $\epsilon > 0$, there is an m such that it is NP-hard to distinguish ℓ -layered label cover instances with domain size m that are fully satisfiable from those where not even an ϵ -fraction of all chains is weakly satisfied.

Smug sets and hardness

Corollary: Suppose there are constants k, ℓ such that the following holds, for every $f \in \text{Pol}(\mathbf{A}, \mathbf{B})$:

- f has a smug set of at most k coordinates
- f has no family of more than ℓ pairwise disjoint smug sets
- if $g \xrightarrow{\pi} f$ and S is a smug set of g, $\pi^{-1}(S)$ is a smug set of f

Then $PCSP(\mathbf{A}, \mathbf{B})$ is NP-hard, for large enough m.

• Exact definition of *smug* is irrelevant, as long as it satisfies these three conditions

Bounded number of disjoint smug sets

Proposition: For every polymorphism f of (1, g, k)-SetSAT with domain size s+1, if S_1, \ldots, S_t are disjoint smug sets of f, then $t < \frac{k}{k-g}$.

Proof:

- Suppose $t \ge \frac{k}{k-g}$
- Build a multiset containing each S_i up to k-g times until we have exactly k in total
- This gives a multiset of k smug sets such that every coordinate is contained in at most k-g of them
- Contradicts earlier proposition:

Proposition: A function $f:[s+1]^m \to [s+1]$ is a polymorphism of (1,g,k)-SetSAT iff there is no multiset $\{S_1,\ldots,S_k\}$ of smug sets of f, such that each coordinate $\ell \in [m]$ is contained in at most k-g of them.

Smug sets preserved by minor preimages

g is a minor of
$$f: g(x_1, \ldots, x_m) \approx f(x_{\pi(1)}, \ldots, x_{\pi(n)})$$

$$g(\underbrace{\mathbf{b}}_{\mathbf{a}} \underbrace{\mathbf{c}}_{\mathbf{a}} \underbrace{\mathbf{a}}_{\mathbf{a}}) = \mathbf{a}$$

$$f(\underbrace{\mathbf{b}}_{\mathbf{b}} \underbrace{\mathbf{a}}_{\mathbf{a}} \underbrace{\mathbf{a}}_{\mathbf{a}}) = \mathbf{a}$$

Not preserved by minor images:

$$g(\underbrace{?}_{-}, \underbrace{\mathbf{a}}_{-}, \underbrace{\mathbf{a}}_{-}) = \mathbf{a}$$

$$f(\underbrace{\mathbf{b}}_{-}, \underbrace{\mathbf{c}}_{-}, \underbrace{\mathbf{a}}_{-}, \underbrace{\mathbf{a}}_{-}) = \mathbf{a}$$

Existence of small smug sets

Proposition: Let $\frac{g}{k} < \frac{s}{s+1}$. Every polymorphism of (1, g, k)-SetSAT with domain size s+1 has a smug set of size at most g.

Proof:

- Construct small set from collection of minimal smug sets, using conservativity and minimality to enforce outputs of pols
- Much more involved than proving the other two properties

Generalizations and open problems

- What if the literals are drawn from an arbitrary family of sets $\mathcal{L} \subseteq \mathcal{P}([d])$?
- Some reductions and easy cases, eg if $\bigcap_{L\in\mathcal{L}} L \neq \emptyset$ then problem is tractable

Conjecture: Let $\mathcal{L} \subseteq \mathcal{P}([d])$ and let s_{\max} be the size of the largest set in \mathcal{L} . If $\bigcap_{L \in \mathcal{L}} L = \emptyset$ then $(1, g, k, \mathcal{L})$ -SetSAT is tractable iff $\frac{g}{k} \ge \frac{s_{\max}}{s_{\max+1}}$.

- Tractability: randomized algorithm still works for $\frac{g}{k} \ge \frac{s_{\text{max}}}{s_{\text{max}+1}}$
- Hardness: polymorphisms are no longer conservative, so smug sets can't immediately be used

Hypergraph colouring

Theorem: [Austrin Guruswami Håstad] For $g \ge 1$, given a (2g + 1)-uniform hypergraph that admits a 2-colouring of discrepancy 1 (smallest possible), it is NP-hard to find a non-monochromatic 2-colouring.

Conjecture: Given an (s+1)r + a uniform hypergraph H with $1 \le a \le s$, it is NP-hard to distinguish the two cases:

- There exists an s+1 colouring of H of discrepancy at most 1
- Every s+1 colouring of H creates a monochromatic hyperedge
- If we are instead promised discrepancy 0, the problem is tractable by a reduction to SetSAT
- Given an (s+1)r uniform hypergraph H, the two cases can be distinguished in polynomial time:
 - There exists an s+1 colouring of H of discrepancy 0
 - Every s+1 colouring of H creates a monochromatic hyperedge

Hypergraph colouring

Conjecture: Given an (s+1)r + a uniform hypergraph H with $1 \le a \le s$, it is NP-hard to distinguish the two cases:

- There exists an s+1 colouring of H of discrepancy at most 1
- Every s+1 colouring of H creates a monochromatic hyperedge
- This conjecture would imply all the SetSAT hardness results
- Challenges: polymorphisms not conservative, PCSP is much more symmetric

Thank you!